Carry-Lookahead Adder In Math

Nakidai Perumenei

September 2025

1 Definitions

In this paper bits are counted from 0 (least significant) upwards; A is one number; B is another number; G is generate; P is propagate; P is carry; P is P is carry; P is carry; P is carry; P is sum; P is judge of P is judge.

2 Introduction

To start with, CLA is a mechanism for calculating the carry bits independently of each other. It is used in hardware, because, unlike in software, here it is possible to do a lot of parallel calculations, which is more efficient than serial.

Before speaking about carry, it is important to know about generating and propagating it.

A pair generates a carry if both bits are 1. In math it is written as $G_i \equiv A_i \wedge B_i$,

A pair propagates a carry if at least one bit is 1, speaking math $P_i \equiv A_i \vee B_i$. Now, carry bit is set if the current pair of bits generates it, or so does the previous one and the current propagates. Formula for the current carry is $C_i \equiv G_i \vee P_i \wedge C_{i-1}$.

Of course, it is possible to unwrap this formula: $C_i \equiv G_i \vee P_i \wedge C_{i-1} \equiv G_i \vee P_i \wedge (G_{i-1} \vee P_{i-1} \wedge C_{i-2})$. And also it is possible to simplify this to a very simple polynomial: $C_i \equiv G_i \vee P_i \wedge G_{i-1} \vee P_i \wedge P_{i-1} \wedge C_{i-2}$. So it is also correct to define that carry is produced if current pair generates it, or so does anyone before and all intermediate pairs propagate it.

Then, having a carry it is easy to calculate the sum: $S_i \equiv A_i \oplus B_i \oplus C_i$.

Though, it is not needed for P_i to be defined with OR as if $A_i = B_i = 1 \Rightarrow G_i \equiv A_i \wedge B_i = 1$. So we can define $P_i \equiv A_i \oplus B_i$, therefore sum is $S_i \equiv P_i \oplus C_i$. Also, as now G_i and P_i do not overlap, carry calculation can be written with XOR: $C_i \equiv G_i \oplus P_i \wedge C_{i-1}$.

If to expand sum, then $S_i \equiv P_i \oplus G_i \oplus P_i \wedge C_{i-1}$.

Obviously, as the formula is recursive it is needed to have an edge case. Stop condition there is $G_{i-1} \equiv C_{in}$.

i	A	В	Р	G	С	S
0	1	1	0	1	0	0
1	1	0	1	0	1	0
2	0	1	1	0	1	0
3	0	0	0	0	1	1

Table 1: intermediate results

3 Adder Definition

With all that information, it is possible to define a CLA adder in math terms:

$$\begin{split} P_i &\equiv A_i \oplus B_i \\ G_i &\equiv \left\{ \begin{array}{ll} C_{\mathrm{in}} & \text{if } i = -1 \\ A_i \wedge B_i & \text{otherwise} \end{array} \right. \\ C_i &\equiv \oplus_{j=-1}^{i-1} G_j \Pi_{k=j+1}^{i-1} P_k \\ S(A,B) &\equiv \sum_{i=0}^{\lfloor \log_2 \max(A,B) \rfloor + 1} 2^i (P_i \oplus C_i) \end{split}$$

4 Example

Let us test this adder with a simple pair: 3 and 5. For ease of calculation, it is convenient to represent them in binary form: 11_2 and 101_2 . Formula will iterate over more binary digits than present, so it is also convenient to align these numbers with zeroes: 0011_2 and 0101_2 . Also let C_in be empty.

Table 1 shows all the results.

It's quite easy to calculate P and G: they are just 1 operation. Also it's important to keep in mind that $G_{-1}=0$.

Next step is to calculate carries. Let us start from the C_0 :

$$C_0 = \bigoplus_{j=-1}^{-1} G_j \Pi_{k=j+1}^{-1} P_k = G_{-1} = 0$$

After unwrapping all the scary operators we get that it just depends on $G_{-1}=0$. Easy. Then:

$$C_1 = \bigoplus_{j=-1}^{0} G_j \prod_{k=j+1}^{0} P_k = G_{-1} \land P_0 \oplus G_0 = 0 \land 0 \oplus 1 = 1$$

Now G_{-1} is in the same monomial as P_0 , and G_0 is added. Then:

$$C_2 = \bigoplus_{j=-1}^1 G_j \prod_{k=j+1}^1 P_k$$

= $G_{-1} \wedge P_0 \wedge P_1 \oplus G_0 \wedge P_1 \oplus G_1$
= $0 \oplus 1 \wedge 1 \oplus 0 = 1$

The tendency is clear. And the last carry:

$$C_3 = \bigoplus_{j=-1}^2 G_j \Pi_{k=j+1}^2 P_k$$

= $G_{-1} \wedge P_0 \wedge P_1 \wedge P_2 \oplus G_0 \wedge P_1 \wedge P_2 \oplus G_1 \wedge P_2 \oplus G_2$
= $0 \oplus 1 \oplus 0 \oplus 0 = 1$

The last thing to do is to XOR P and C to get the sum, which is $1000_2=8=5+3$. Adder works just as expected.