
Carry-Lookahead Adder In Math

Nakidai Perumenei

September 2025

1 Definitions

In this paper bits are counted from 0 (least significant) upwards; A is one
number; B is another number; G is generate; P is propagate; C is carry; Cin is
Ci−1 — carry bit given to an adder’s input; S is sum; i, j, k are bit indexes.

2 Introduction

To start with, CLA is a mechanism for calculating the carry bits independently
of each other. It is used in hardware, because, unlike in software, here it is
possible to do a lot of parallel calculations, which is more efficient than serial.

Before speaking about carry, it is important to know about generating and
propagating it.

A pair generates a carry if both bits are 1. In math it is written as Gi ≡
Ai ∧Bi,

A pair propagates a carry if at least one bit is 1, speaking math Pi ≡ Ai∨Bi.
Now, carry bit is set if the current pair of bits generates it, or so does

the previous one and the current propagates. Formula for the current carry is
Ci ≡ Gi ∨ Pi ∧ Ci−1.

Of course, it is possible to unwrap this formula: Ci ≡ Gi ∨ Pi ∧ Ci−1 ≡
Gi ∨Pi ∧ (Gi−1 ∨Pi−1 ∧Ci−2). And also it is possible to simplify this to a very
simple polynomial: Ci ≡ Gi ∨Pi ∧Gi−1 ∨Pi ∧Pi−1 ∧Ci−2. So it is also correct
to define that carry is produced if current pair generates it, or so does anyone
before and all intermediate pairs propagate it.

Then, having a carry it is easy to calculate the sum: Si ≡ Ai ⊕Bi ⊕ Ci.
Though, it is not needed for Pi to be defined with OR as if Ai = Bi = 1 ⇒

Gi ≡ Ai∧Bi = 1. So we can define Pi ≡ Ai⊕Bi, therefore sum is Si ≡ Pi⊕Ci.
Also, as now Gi and Pi do not overlap, carry calculation can be written with
XOR: Ci ≡ Gi ⊕ Pi ∧ Ci−1.

If to expand sum, then Si ≡ Pi ⊕Gi ⊕ Pi ∧ Ci−1.
Obviously, as the formula is recursive it is needed to have an edge case. Stop

condition there is Gi−1 ≡ Cin.

1



i A B P G C S
0 1 1 0 1 0 0
1 1 0 1 0 1 0
2 0 1 1 0 1 0
3 0 0 0 0 1 1

Table 1: intermediate results

3 Adder Definition

With all that information, it is possible to define a CLA adder in math terms:

Pi ≡ Ai ⊕Bi

Gi ≡
{

Cin if i = −1
Ai ∧Bi otherwise

Ci ≡ ⊕i−1
j=−1GjΠ

i−1
k=j+1Pk

S(A,B) ≡
∑⌊log2 max(A,B)⌋+1

i=0 2i(Pi ⊕ Ci)

4 Example

Let us test this adder with a simple pair: 3 and 5. For ease of calculation, it
is convenient to represent them in binary form: 112 and 1012. Formula will
iterate over more binary digits than present, so it is also convenient to align
these numbers with zeroes: 00112 and 01012. Also let Cin be empty.

Table 1 shows all the results.
It’s quite easy to calculate P and G: they are just 1 operation. Also it’s

important to keep in mind that G−1 = 0.
Next step is to calculate carries. Let us start from the C0:

C0 = ⊕−1
j=−1GjΠ

−1
k=j+1Pk = G−1 = 0

After unwrapping all the scary operators we get that it just depends on G−1 = 0.
Easy. Then:

C1 = ⊕0
j=−1GjΠ

0
k=j+1Pk = G−1 ∧ P0 ⊕G0 = 0 ∧ 0⊕ 1 = 1

Now G−1 is in the same monomial as P0, and G0 is added. Then:

C2 = ⊕1
j=−1GjΠ

1
k=j+1Pk

= G−1 ∧ P0 ∧ P1 ⊕G0 ∧ P1 ⊕G1

= 0⊕ 1 ∧ 1⊕ 0 = 1

2



The tendency is clear. And the last carry:

C3 = ⊕2
j=−1GjΠ

2
k=j+1Pk

= G−1 ∧ P0 ∧ P1 ∧ P2 ⊕G0 ∧ P1 ∧ P2 ⊕G1 ∧ P2 ⊕G2

= 0⊕ 1⊕ 0⊕ 0 = 1

The last thing to do is to XOR P and C to get the sum, which is 10002 = 8 =
5 + 3. Adder works just as expected.

3


